39 research outputs found

    Alcohol representations are socially situated: an investigation of beverage representations by using a property generation task

    Get PDF
    Previous research suggests that people's representations of alcoholic beverages play an important role in drinking behavior. However, relatively little is known about the contents of these representations. Here, we introduce the property generation task as a tool to explore these representations in detail. In a laboratory study (N = 110), and a bar field-study (N = 56), participants listed typical properties of alcoholic beverages, sugary beverages, and water. Each of these properties was then categorized using a previously developed, hierarchical coding scheme. For example, the property “sweet” was categorized as referring to “taste”, which falls under “sensory experience”, which falls under “consumption situation”. Afterwards, participants completed measures of drinking behavior and alcohol craving. Results showed that alcoholic beverages were strongly represented in terms of consumption situations, with 57% and 69% of properties relating to consumption in the laboratory and the bar study, respectively. Specifically, alcoholic beverages were more strongly represented in terms of the social context of consumption (e.g., “with friends”) than the other beverages. In addition, alcoholic beverages were strongly represented in terms of sensory experiences (e.g. “sweet”) and positive outcomes (e.g. “creates fun”), as were the sugary beverages and water. In Study 1, the extent to which alcoholic beverages were represented in terms of social context was positively associated with craving and regularly consuming alcohol. The property generation task provides a useful tool to access people's idiosyncratic representations of alcoholic beverages. This may further our understanding of drinking behavior, and help to tailor research and interventions to reduce drinking of alcoholic and other high-calorie beverages

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    Get PDF

    Relative developmental toxicity potencies of retinoids in the embryonic stem cell test compared with their relative potencies in in vivo and two other in vitro assays for developmental toxicity

    No full text
    The present study determines the relative developmental toxicity potencies of retinoids in the embryonic stem (ES)-D3 cell differentiation assay of the embryonic stem cell test, and compares the outcomes with their relative potencies in in vivo and two other in vitro assays for developmental toxicity. The results reveal that the potency ranking obtained in the ES-D3 cell differentiation assay is similar to the reported potency rankings in the two other in vitro assays for developmental toxicity. TTNPB ((E)-4[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid) was the most potent retinoid, whereas etretinate and retinol had the lowest potency. All-trans-retinoic acid, 13-cis-retinoic acid, 9-cis-retinoic acid and acitretin showed an intermediate potency. In vivo potency rankings of the developmental toxicity of retinoids appear to be dependent on the species and/or exposure regimens used. The obtained in vitro potency ranking does not completely correspond with the in vivo potency rankings, although TTNPB is correctly predicted to be the most potent and retinol the least potent congener. The lack of in vivo kinetic processes in the ES-D3 cell differentiation assay might explain the deviating potency predictions of some retinoids. Therefore, knowledge on the species-dependent in vivo kinetics is essential when using in vitro toxicity data for the estimation of in vivo developmental toxicity potencies within series of related compound

    Prediction of in vivo developmental toxicity of all-trans-retinoic acid based on in vitro toxicity data and in silico physiologycally based kinetic modeling

    No full text
    The use of laboratory animals for toxicity testing in chemical safety assessment meets increasing ethical, economic and legislative constraints. The development, validation and application of reliable alternatives for in vivo toxicity testing are therefore urgently needed. In order to use toxicity data obtained from in vitro assays for risk assessment, in vitro concentration–response data need to be translated into in vivo dose–response data that are needed to obtain points of departure for risk assessment, like a benchmark dose (BMD). In the present study, we translated in vitro concentration–response data of the retinoid all-trans-retinoic acid (ATRA), obtained in the differentiation assay of the embryonic stem cell test, into in vivo dose–response data using a physiologically based kinetic model for rat and human that is mainly based on kinetic model parameter values derived using in vitro techniques. The predicted in vivo dose–response data were used for BMD modeling, and the obtained BMDL10 values [lower limit of the 95 % confidence interval on the BMD at which a benchmark response equivalent to a 10 % effect size (BMR10) is reached (BMD10)] for rat were compared with BMDL10 values derived from in vivo developmental toxicity data in rats reported in the literature. The results show that the BMDL10 values from predicted dose–response data differ about sixfold from the BMDL10 values obtained from in vivo data, pointing at the feasibility of using a combined in vitro–in silico approach for defining a point of departure for toxicological risk assessment
    corecore